Konveksni regularni 4-politop (
V matematiki je konveksni regularni 4-politop (ali polihoron) štirirazsežni (4D) politop, ki je hkrati regularen in konveksen. To so štiridimenzionalni analogi platonskih teles (v treh dimenzijah) in pravilnih mnogokotnikov (v dveh dimenzijah).
Te politope je sredi 19. stoletja prvič opisal švicarski matematik Ludwig Schläfli. Schläfli je ugotovil, da obstaja natanko šest takšnih likov. Pet od teh si lahko predstavljamo kot višje dimenzionalne analogije platonskih teles. Obstaja še ena figura (24-celica), ki nima tridimenzionalnega ekvivalenta.
Vsak konveksni pravilen 4-politop je omejen z množico tridimenzionalnih celic, ki so vsa platonska telesa iste vrste in velikosti. Te celice so vzdolž svojih površin pravilno prilegajoče se.
Lastnosti
V naslednjih tabelah so navedene nekatere lastnosti šestih konveksnih pravilnih polihorov. Simetrijske grupe teh poliedrov so vse Coxeterjeve grupe in so podane v zapisu, opisanem v tem članku. Številka, ki sledi imenu grupe, je red grupe.
Imena | Družina | Schläfli | Vrhovi | Robovi | Obrazi | Celice | Številke vrhov | Dvojni politop | Skupina simetrije | |
Pentahoron5-celicapentatophiperpiramidahipertetraeder4-simpleks | simpleks | {3,3,3} | 5 | 10 | 10 | 5 | tetraedri | (samodvojno) | A4 | 120 |
Teseraktoktahoron8-celicahiperkuba4-kuba | hiperkocka | {4,3,3} | 16 | 32 | 24 | 8 | tetraedri | 16 celic | B4 | 384 |
Heksadekahoron16-celični ortoplekshiperoktaeder4-ortopleks | navzkrižni politop ( | {3,3,4} | 8 | 24 | 32 | 16 | oktaedri | teserakt | B4 | 384 |
Icositetrachoron24-celloctaplexpolyoctahedron | {3,4,3} | 24 | 96 | 96 | 24 | (samodvojno) | F4 | 1152 | ||
Hecatonicosachoron120-celičnildodekaplekshiperdodekaederpoliedodekaeder | {5,3,3} | 600 | 1200 | 720 | 120 | tetraedri | 600-celični | H4 | 14400 | |
Heksakosičoron600-celičnitetraplekshiperikozaedripolitetraedri | {3,3,5} | 120 | 720 | 1200 | 600 | ikozaedri | 120-celica | H4 | 14400 |
Ker so meje vsakega od teh likov topološko enakovredne 3-sferi, katere Eulerjeva karakteristika je enaka nič, dobimo 4-dimenzionalni analog Eulerjeve poliedrične formule:
N0 - N +1 N 2- N = 3{\displaystyle0 N_{0}-N_{1}+N_{2}-N_{3}=0\,}
kjer Nk označuje število k-obrazov v politopu (vrh je 0-obraz, rob je 1-obraz itd.).
Vizualizacije
Naslednja tabela prikazuje nekaj dvodimenzionalnih projekcij teh politopov. Različne druge vizualizacije so na voljo na drugih spletnih straneh spodaj. Pod Schläflijevim simbolom so podani tudi grafi Coxeter-Dynkinovih diagramov.
5-celični | 8 celic | 16 celic | 24-celični | 120-celica | 600-celični |
{3,3,3} | {4,3,3} | {3,3,4} | {3,4,3} | {5,3,3} | {3,3,5} |
|
|
|
|
|
|
Ortografske projekcije žičnega okvirja znotraj poligonov Petrie. | |||||
|
|
|
|
|
|
Trdne ortografske projekcije | |||||
|
|
|
|
|
|
Schleglovi diagrami (Perspektivna projekcija) | |||||
|
|
|
|
|
|
Stereografske projekcije (hipersferične) | |||||
|
|
|
|
|
|
Sorodne strani
- Pravilni politop
- Platonska trdna snov
Vprašanja in odgovori
V: Kaj je konveksni pravilen 4-politop?
O: Konveksni regularni 4-politop je štiridimenzionalni politop, ki je hkrati regularen in konveksen.
V: Kateri so analogi konveksnih pravilnih 4-politopov v treh in dveh dimenzijah?
O: Analogi konveksnih pravilnih 4-politopov v treh razsežnostih so platonska telesa, v dveh razsežnostih pa so to pravilni mnogokotniki.
V: Kdo je prvi opisal konveksne pravilne štiripolitope?
O: Švicarski matematik Ludwig Schläfli je sredi 19. stoletja prvi opisal konveksne pravilne 4-politope.
V: Koliko je konveksnih pravilnih 4-politopov?
O: Konveksnih pravilnih 4-politopov je natanko šest.
V: Kaj je edinstvena značilnost 24-celičnega politopa med konveksnimi pravilnimi 4-politopi?
O: 24-celični politop nima tridimenzionalnega ekvivalenta med konveksnimi pravilnimi 4-politopi.
V: Katere so tridimenzionalne celice, ki omejujejo vsak konveksni pravilni 4-politop?
O: Vsak konveksni pravilni 4-politop je omejen z množico tridimenzionalnih celic, ki so vsa platonska telesa iste vrste in velikosti.
V: Kako so tridimenzionalne celice povezane v konveksnem pravilnem 4-politopu?
O: V konveksnem pravilnem 4-politopu so tridimenzionalne celice vzdolž svojih ustreznih površin nameščene skupaj na pravilen način.